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Abstract. Industrial glass is produced at temperatures above 600◦C, where glass becomes a highly viscous
incompressible fluid, usually considered as Newtonian. In the production two phases may be distinguished, namely
the pressing phase and the blowing phase. This study will be concerned with glass flow in the pressing phase, which
is called thus because a blob of fluid glass (called a gob) is pressed in a mould by a plunger, such that the glass
flows between mould and plunger, in order to obtain the preform of a bottle or jar, called a parison. In the blowing
phase (not considered here) the parison is subsequently blown into the final shape of the product. By application
of the slender geometry of mould and plunger and a cylindrical symmetry, a form of Reynolds’s lubrication flow
equations is obtained. These equations are solved by utilizing the incompressibility of the glass, by which the
flux at any axial cross section is determined for prescribed plunger velocity, leading to analytical results in closed
form for velocity field and pressure gradient. The glass level is implicitly defined by the integral over the varying
volume which is to remain constant. The pressure may then be determined by integration. Special attention is given
to the required boundary conditions. It is known that, depending on several problem parameters like temperature,
pressure, and smoothness of the wall, the glass flow slips, to some extent, along the wall. Therefore, this study
includes a general formulation of the boundary condition of partial slip in the form of a linear relation between
shear stress and slip velocity, also known as Navier’s slip condition. The coefficient of this relation, a positive
number, may vary in our solution with axial position, but depends on the problem and is to be obtained from (for
example) experiment. Two special cases, which seem to be relevant in practice, are considered as examples: (i) no
slip on both plunger and mould; (ii) no slip on the mould and full slip (zero friction) on the plunger. The results are
compared with fully numerical (FEM) solutions of a Stokes-flow model, and the agreement is good or excellent.
Since in any practical situation it is not the plunger velocity which is prescribed, but (within practical limits) the
force applied by the plunger, the problem of a prescribed plunger force has also been investigated.
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1. Introduction

Glass is a widely used packing material, for example in the form of jars and bottles in the food
industry. The production of glass forms like jars proceeds more or less along the following
lines [1, pp.612–613]. First, grains and additives, like soda, are heated in a tank. Here gas
burners or electric heaters provide the heat necessary to warm the material up to some 1200◦C.
At one end the liquid glass comes out and is led to a pressing or blowing machine. To obtain
a glass form, a two-stage process is often used. First (Figure 1), a blob of hot glass called a
gob falls into a configuration consisting of amouldandplunger. As soon as the entire glass
drop has fallen into this mould, the plunger starts moving to press the glass. This process is
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Figure 1. Pressing phase

Figure 2. Blowing phase

calledpressing. At the end, the glass drop is reshaped into a preform of a bottle or jar, called
a parison. After a short period of time, for cooling purposes (the mould is kept at 500◦C) ,
the parison is blown to its final shape in another mould. This process is calledblowing (see
Figure 2).

The contents of this paper concern glass flow in the pressing phase in manufacturing glass
jars or parisons. A typical feature of the shape of a parison is that wall thickness and radius
vary very slowly (except for the bottom part), see Figure 3. In the present paper, this slow
variation will be utilized to obtain an explicit, analytical description of velocity and pressure
gradient of the glass flow.
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2. Governing equations

The motion of glass at temperatures above 600◦C can be described by the Navier-Stokes
equations for incompressible Newtonian fluids [2, p.3], given by

ρ
(∂v
∂t
+ v ·∇v) = ∇·σ, ∇·v = 0, (1a, b)

wherev denotes the velocity field, andρ the density. Further,σ is the fluid stress tensor

σ = −p I + τ, or σij = −p δij + τij , (2)

wherep is the pressure,I = (δij ) is the unit tensor, defined byδij = 1 if i = j , and
= 0 otherwise, andτ is the deviatoric or viscous stress tensor. In Newtonian fluids, a linear
relationship is assumed betweenτ and the deformation rate of the fluid element, expressed in
the rate-of-strain tensor

.
γ = ∇v + (∇v)T:

τ = η
.
γ or τij = η

(
∂vi

∂xj
+ ∂vj
∂xi

)
, (3)

whereη is the dynamic viscosity. In generalη depends on temperature, and may vary in
space and time, but for a uniform temperature as we have here (approximately; see Section 4),
η remains constant. Together with∇·v = 0, ∇·σ reduces to−∇p + η∇2v. As a result,
Equations (1a,b) assume their common form

ρ
(∂v
∂t
+ v ·∇v) = −∇p + η∇2v, ∇·v = 0. (4a, b)

In view of the geometry of plunger and mould, we choose cylindrical coordinates(r, θ, z),
andv, w, u will denote ther, θ, z components of the velocityv. We assume the problem to
be axisymmetric, so that bothw and allθ-derivatives vanish, and the problem reduces to a
two-dimensional one in the(r, z)-plane (see Figure 3).

3. Slender-geometry approximation

We will concentrate our analysis on the flow in the narrow annular duct between plunger
and mould (z > zp, see Figure 3). This region is very slender, and therefore amenable to
asymptotic analysis [3, p.182], while at the same time the flow in the region between mould
bottom and plunger top is practically stagnant, and therefore less important.

We will make Equations (4a,b) dimensionless by a suitable scaling. From the geometry
of plunger and mould, we have two relevant length scales, the wall thickness of the parison,
D, and the length of the plunger,L, while D � L. Except right near the plunger top, any
variation inz scales onL and any variation inr scales onD. Therefore, we scalez with L and
r with D, while we introduce the small parameter

ε = D

L
. (5)

The axial velocityu scales on a typical velocityV , while from the equation of mass conser-
vation it follows that the radial velocityv has to scale onεV . As densityρ and viscosityη are
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Figure 3. Sketch of configuration. Note thatRp = Rp(z − zp) is the surface of the plunger,Rm = Rm(z) is the
surface of the mould andzp is position of the top of the plunger.

constant, they are parameters of the problem. Pressurep is to be scaled onηVL/D2 (rather
thanρV 2), because the glass flow is highly viscous, as we will see below. We have then

z = Lz∗, r = Dr∗, u = Vu∗, v = εV v∗, p = ηVL

D2
p∗, t = L

V
t∗.

Now we substitute the above scalings in the Navier-Stokes equations and henceforth ignore
the asterisks∗, to obtain, respectively, the dimensionlessz, r-components of the Navier-Stokes
equations and the continuity equation,viz.

εRe
(∂u
∂t
+ u∂u

∂z
+ v ∂u

∂r

)
= −∂p

∂z
+ ε2∂

2u

∂z2
+ 1

r

∂

∂r

(
r
∂u

∂r

)
, (6a)

ε3Re
(∂v
∂t
+ u∂v

∂z
+ v ∂v

∂r

)
= −∂p

∂r
+ ε4∂

2v

∂z2
+ ε2 ∂

∂r

(1

r

∂

∂r

(
rv
))
, (6b)

∂u

∂z
+ 1

r

∂

∂r

(
rv
) = 0, (6c)

where Re= ρVD/η is the Reynolds number.
According to [4, p.7], the velocity of the plunger, which can be used as a characteristic

velocity, if the cross section of the annular channel compared to the plunger cross section
is not too small1, is typically V = 10−1 m/s. A typical channel width isD ≈ 10−2m. A
typical length of the plunger is 10−1 m. The dynamic viscosity of glass varies greatly with
temperature, but for a temperature around 800◦C it is of the order of 104 kg/ms. The density

1as follows from an axial mass flux balance; see Section 6.1
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of glass is 2500 kg/m3 [5, p.4]. Therefore, we obtain typicallyε = 1
10, Re = 2·5 × 10−4,

εRe= 2·5× 10−5, andε3Re= 2·5× 10−7, and we can ignore the inertia and radial-friction
terms to obtain

∂p

∂z
= 1

r

∂

∂r

(
r
∂u

∂r

)
,

∂p

∂r
= 0,

∂u

∂z
+ 1

r

∂

∂r

(
rv
) = 0. (7a, b, c)

with an assumed error ofO(ε2) because Re< ε. This set of equations may be recognized as
Reynolds’s lubrication-flow equations in cylindrical coordinates [6, p.83].

4. The temperature remains constant

Although in viscous flow the energy equation is decoupled from the equation of motion (4a), if
the flow is incompressible and Newtonian with constant viscosity, the validity of this assump-
tion is not obvious in the present problem. The viscosity is highly temperature-dependent, as
is seen from the VFT (Vogel, Fulcher, Tamman)-relation [1, p.936]

log10η = A+ B

T − T0
,

whereA, B, T0 are constants depending on the glass composition (for exampleA = −2.4,
B = 4032, andT0 = 170 for Soda-Silica Glasses [7]), whileT is in degrees Celsius. In this
caseT = 800 yields a viscosity ofη = 104 kg/ms.

The high viscous forces may generate heat by friction, and the walls may supply or absorb
heat by conduction, such that, with the temperature, the viscosity varies along the flow.

To investigate this possibility we will analyse the energy equation and estimate the order
of magnitude of the various terms. The energy conservation law for viscous and compressible
fluids may be written as [8, p.10]

∂

∂t

(
ρe
) +∇·(ρve) = −p∇·v −∇·q + τ:∇v, (8)

wheree denotes the internal energy per unit of mass,q is the heat flux due to heat conduction,
andτ denotes the viscous stress tensor. Since we are only interested in an order-of-magnitude
estimate, we assumee ' cpT , wherecp is the heat capacity at constant pressure andT is
the absolute temperature [9, p.31], and forq Fourier’s lawq = −k∇T , wherek is the heat
conductivity.

In an incompressible flow with constantcp andk we have

ρcp

(∂T
∂t
+ v ·∇T ) = k∇2T + η(

.
γ :∇v).

We non-dimensionalize as before

r = Dr∗, z = Lz∗, v = εV v∗, u = V u∗, T = Tm +1T T ∗, η = ηgη
∗, t = L

V
t∗,

where1T = Tg − Tm andηg denotes the glass viscosity at the bulk temperature. (Note that
in the rest of the paper we use a constant viscosityη = ηg.) We find (ignoring the asterisks∗)

ε
[∂T
∂t
+ v ·∇T ] = 1

Pe

[1

r

∂

∂r

(
r
∂T

∂r

)
+ ε2∂

2T

∂z2

]
+ Ec

Re
η
[(∂u
∂r
+ ε2∂v

∂z

)2+ 2ε2
(∂v

∂r

2 +
v
r

2 +
∂u
∂z

2)]
(9)
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with Reynolds number Re= ρVD/ηg, Eckert number Ec= V 2/cp1T , and Peclet number
Pe= ρVDcp/k. (Note that Pe and Re are related through the Prandtl number as Pe= RePr,
while PeEc/Re = Br is called the Brinkman number.) When we substitute the following
values, typical of glass at 800◦C,

D : typical parison length scale = 10−2 m Tg : glass temperature = 800◦C,

V : typical plunger velocity = 10−1 m/s Tm : mould temperature = 500◦C,

ρ : glass density = 2500 kg/m3 cp : glass heat capacity = 1100 J/kg◦C
ηg : glass dynamic viscosity = 104 kg/ms k : glass thermal conductivity = 1.7 W/m◦C
L : typical plunger length scale = 10−1 m

we get the following dimensionless numbers:

ε = 10−1,
1

Pe
= 6 · 2× 10−4,

Ec

Re
= 1 · 2× 10−4.

Both 1/(εPe) and Ec/(εRe) are very small numbers, so in the bulk of the flow we can ignore
the heat-conduction and thermal-production terms (the second and third term in Equation 9)
against the convection (first) term. Hence, the energy equation simplifies to

∂T

∂t
+ v ·∇T = dT

dt
= 0,

indicating that the temperature is preserved following the flow. So, if we start with a uniform
temperature field, it will remain uniform everywhere, and it follows that the viscosity also
remains constant.

Note that this is not true in the thin temperature boundary layer along the wall, where the
temperature varies from its value at the wall to the bulk temperature, and the conduction term
is comparable with the convection term. From this balance,

v ·∇T ∼ 1

εPe

[∂2T

∂r2
+ 1

r

∂T

∂r

]
,

it follows that the dimensionless boundary-layer thickness is of the order ofO((εPe)−1/3)

(no slip) orO((εPe)−1/2) (with slip). For the values considered this corresponds to boundary-
layer thicknesses of, respectively,∼ 2×10−1 and∼ 0·8×10−1, or 20% and 8% of the channel
width. These values are, of course, not very small. However, to make progress we will for the
moment consider them small enough to be ignored.

A small countereffect that may occur is that very close to the wall, where the glass tem-
perature attains that of the wall, the viscosity increases by several orders of magnitude. For
the present example the dimensionless viscosity is equal toη(Tm) = 105·8, which leads to
(Ec/εRe)η(Tm) = 760. So, with little or no slip between glass and wall (otherwise

.
γ :∇v is

small) the fluid friction is not negligible very close to the wall and will generate some heat.
This may increase the temperature locally, and slightly counteract the lower wall temperature.
The resulting decrease of viscosity could be called “self-lubrication”.
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5. Boundary conditions

Depending on problem parameters such as wall temperature, fluid pressure, surface tension,
or the presence of a lubricant like graphite powder [10, 11, 12, 13], the glass flow slips com-
pletely, partly or not at all along the wall. This means that the tangential component of the
glass velocityv at the wall differs from the wall velocityvw, the difference being called the
slip velocity. Since by assumption the glass flows in the(r, z)-plane and the plunger moves in
thez-direction, it is sufficient to consider the tangential component in the(r, z)-plane.

Two slip conditions are commonly used. One is based on Coulomb friction [13], which is
the assumption of a linear relation between tangential (shear) stress and normal stress (pres-
sure), usually with a threshold value. The other is Navier’s slip condition [6, p.87], which
assumes a linear relation between the slip velocity and the shear stress. Physically, little is
known as to which condition is essentially more correct. Therefore, we will take here Navier’s
slip condition, as it is mathematically more convenient here, since in our theory the pressure
is only available as an integral, while the velocities are explicitly known.

The shear stress (Equations 2,3) applied to a surface with unit normal vectorn, defined as
pointingout of the fluid, in the tangential directiont , is given by−(σ .n) .t = −(τ .n) .t . The
slip velocity(v − vw) .t will be proportional to this stress in the(r, z)-plane

(v − vw) .t = −s(τ .n) .t , (10)

where the slip factors (a positive number) measures the amount of slip. (A better measure is
the dimensionless version ofs; see below.) There is no slip ifs = 0, while there is no friction
if s = ∞. The inverse,s−1, might be called the friction factor. In general,s may be a function
of position.

More advanced slip modelling, for example a nonlinear relation withs depending on
pressure, is formally included in this way, if we in some way iteratively adapts and the
corresponding solution. We haven’t investigated this possibility here, however.

For reference purposes, we note that, in cylindrical coordinates, the components ofσ are
given by

σrr = −p + 2η
∂v

∂r
, σθr = σrθ = 0, σθθ = −p + 2η

v

r
,

σzz = −p + 2η
∂u

∂z
, σzr = σrz = η

(∂v
∂z
+ ∂u
∂r

)
, σθz = σzθ = 0.

5.1. BOUNDARY CONDITIONS ON THE PLUNGER

To apply the above conditions to the moving plunger surface, we recall that this is defined as:

r = Rp(z − zp(t)),
wherez = zp(t) is the position of the top of the plunger at timet . Subscript “p” denotes the
value at the plunger. Unless indicated otherwise, we will write hereRp = Rp(z− zp).

The unit outward normalnp and the counterclockwise-directed unit tangenttp in the(r, z)-
plane are given by

np =
R′pez − er√

1+ R′p2
, tp =

−ez − R′per√
1+ R′p2

. (11)
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From the definition of stress (2, 3) we have

(σ .np) .tp = η

(1− R′p2)
(∂u
∂r
+ ∂v
∂z

)
− 2R′p

(∂u
∂z
− ∂v
∂r

)
1+ R′p2

. (12)

To determine the slip velocity, we note that the plunger is moving down with speeddzp
dt = up.

Thus, the (dimensional) slip velocity at the plunger surface is

(v − upez) .tp = ((u− up)ez + ver) .
−ez − R′per√

1+ R′p2
= −(u− up)+ vR

′
p√

1+ R′p2
. (13)

From Equations (10, 11, 13), we obtain the boundary condition on the plunger

(u− up)+ vR′p√
1+ R′p2

= spη
(1− R′p2)

(∂u
∂r
+ ∂v
∂z

)
− 2R′p

(∂u
∂z
− ∂v
∂r

)
1+ R′p2

, (14)

wheresp is s at the plunger. The other boundary condition at the plunger follows from the
observation that the wall is solid, sov .n = 0 or

v = (u− up)R′p. (15)

After introducing the following scaled slip coefficients∗

s = D

η
s∗ (16)

and using the same scaling as before, we obtain the dimensionless form of Equation (14) and
(15) (with asterisks ignored),

(u− up)+ ε2vR′p√
1+ ε2R′p2

= sp
(1− ε2R′p2)

(∂u
∂r
+ ε2∂v

∂z

)
− 2ε2R′p

(∂u
∂z
− ∂v
∂r

)
1+ ε2R′p2

, (17)

v = (u− up)R′p. (18)

As the wall temperature or the amount of lubricant may vary along the wall, it is practically
important to lets be a function of position. The present solution is perfectly valid for any
varying slip factor, as long as axial symmetry is preserved, ands is a smooth function of
positionz:

s = s(z). (19)

For smallε we obtain (with an errorO(ε2)) for the boundary condition (17)

u− up = sp ∂u
∂r

at r = Rp, (20)
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wheresp, if non-constant, is to be interpreted as a property of the moving surface and therefore
to be read assp = sp(z − zp).

The other boundary condition (18) will be left as it is.

5.2. BOUNDARY CONDITIONS ON THE MOULD

The surface of the mould, given by

r = Rm(z),
(subscript “m” denotes the value at the mould) has unit outward normalnm and counterclockwise-
directed unit tangenttm given by

nm = −R
′
mez + er√
1+ R′m2

, tm = ez + R′mer√
1+ R′m2

. (21)

In a similar way as for the boundary conditions on the plunger, we obtain the boundary
condition on the mould as

u+ vR′m√
1+ R′m2

= −smη

(1− R′m2)
(∂u
∂r
+ ∂v
∂z

)
− 2R′m

(∂u
∂z
− ∂v
∂r

)
1+ R′m2

, (22)

and

v = uR′m. (23)

In dimensionless form the relations are,

u+ ε2vR′m√
1+ ε2R′m2

= −sm
(1− ε2R′m2)

(∂u
∂r
+ ε2∂v

∂z

)
− 2ε2R′m

(∂u
∂z
− ∂v
∂r

)
1+ ε2R′m2

, (24)

and

v = uR′m, (25)

Similarly, for smallε, boundary condition (24) becomes

u = −sm ∂u
∂r

at r = Rm. (26)

The other condition (25) will be left as it is.

5.3. THE FREE SURFACE

As the blob of glass does not initially fill the mould completely (see Figure 1), there is a
free surface of glass moving into the annular duct between mould and plunger. At the free
boundary, the normal stress must be equal to external pressurep0, which is assumed to be
constant

(σ .n) .n = p0,
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Figure 4. Sketch of the control surfaces to calculate the flux.

and the tangential stress must be equal to zero

(σ .n) .t = 0.

In our slender-geometry approximation the exact shape of the free surface cannot be deter-
mined. In its neighbourhood the flow scales both in ther andz directions on the thicknessD
of the annular channel. In other words, the flow is no longer slowly varying inz, rendering the
present approximation invalid.

Within the present approximation (and assumption of circular symmetry), we will deal
with the average levelb of the free surface as follows (in scaled variables):

p = 0 at z = b(t), (27)

whereb is a function of the time-dependent geometry, implicitly defined in such a way that
the (incompressible) glass volume betweenz = 0 andz = b(t) is constant for allt .

6. Some auxiliary results

In this section, we derive some expressions (to be used later) for the axial flux and the total
force on the plunger.

6.1. THE FLUX

Consider the flux at some levelz through cross sectionS1 (see Figure 4). The value of this
flux depends onz, since the plunger moves downwards and causes the glass to move upwards
through a varying cross section. We will use this value later to find the pressure gradient.

Since glass is an incompressible fluid, we have from Gauss’s divergence theorem

0=
∫
�

∇·v dx =
∫
∂�

v .ndS =
∫
S1

v .ndS +
∫
S2

v .n dS +
∫
S3

v .ndS (28)
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wherev = uez + εver . Since the mould is stationary and impermeable, we have∫
S2

v .ndS = 0,

while the flux throughS1 is given by∫
S1

v .ndS = 2π

∫ Rm

Rp

ru(r, z)dr .

To calculate
∫
S3
v .ndS, we note that it would make no difference for the amount of glass

displaced by the plunger if the plunger were filled with glass, because glass is just as incom-
pressible as the solid plunger. Therefore, instead of control surfaceS3, we might as well use
surfaceS4, which yields more easily the result∫

S3

v .ndS =
∫
S4

v .ndS = πupR
2
p .

It follows that the flux is given by

2π

∫ Rm

Rp

ru(r, z)dr = −πupR
2
p . (29)

6.2. THE TOTAL FORCE ON THE PLUNGER

In this section we discuss the total force on the plunger and use the result to find the velocity
of the plunger. We return for a moment to a dimensional formulation. Later, we will turn to
the dimensionless formulation.

The force (= stress×surface) in directionek, applied to an infinitesimal surface element dS
with outward normaln, is by definition

−(σ .n) .ek dS = −
∑
j

σkj nj dS.

At the plunger surface with unit normalnp, given in (11), the stress in thez-direction is

−(σ .np) .ez =
{(
p − 2η

∂u

∂z

)
R′p + η

(∂v
∂z
+ ∂u
∂r

)} 1√
1+ R′p2

,

whereRp = Rp(z − zp(t)).
A (circular) surface element is given by

dS = 2πRp

√
1+ R′p2 dz.

Thus, the total force on the plunger between top levelz = zp(t) and glass levelz = b(t) is
given by

f = 2π

∫ b

zp

[(
p − 2η

∂u

∂z

)
R′p + η

(∂v
∂z
+ ∂u
∂r

)]
r=Rp

Rp dz. (30)
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Note that this glass level, as a function of time, is yet to be determined (see next section).
We render Equation (30) dimensionless by using the same scaling as before, withb = Lb∗,

and scale the force as

f = 2πηVLf ∗.

This yields (ignoring again the asterisks) :

f =
∫ b

zp

[(
p − 2ε2∂u

∂z

)
R′p + ε2∂v

∂z
+ ∂u
∂r

]
r=Rp

Rp dz '
∫ b

zp

[
pR′p +

∂u

∂r

]
r=Rp

Rp dz.

(31)

7. Results

7.1. THE VELOCITY AND PRESSURE FIELDS

Now we are ready to solve the Equations (??a-c) with boundary conditions (20,18) and
(26,25). First we note thatp is a function ofz only. Then Equation (??a)

dp

dz
= ∂2u

∂r2
+ 1

r

∂u

∂r
= 1

r

∂

∂r

(
r
∂u

∂r

)
has solution

u = 1

4
r2 dp

dz
+ A(z) ln(r)+ B(z).

Using boundary conditions (20) and (26), we obtain:

u = 1

4

dp

dz

[
r2 + βm(αp − logr)− βp(αm − logr)

αm − αp

]
+ up αm − logr

αm − αp
, (32)

where it has been found convenient to introduce auxiliary parametersαp,m, βp,m andγp,m as
follows

σm = sm/Rm, σp = −sp/Rp, α = logR + σ, β = R2(1+ 2σ), γ = R4(1+ 4σ),

(33)

showing at the same time the curious result that the essential slip parameter in a duct is
apparently nots itself, but the product ofs and the wall curvature.

Using Equation (32), the expression foru (29), the relation for the flux, and the following
integral forru∫

ru(r, z)dr = 1
8r

2 dp

dz

1
2r

2+ βm(αp + 1
2 − logr)− βp(αm + 1

2 − logr)

αm − αp

+ . . .
+ 1

2r
2up

αm + 1
2 − log r

αm − αp
, (34)
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we can determine the pressure gradient to find

dp

dz
= −4up

βm − βp

(βm − βp)2− (αm − αp)(γm − γp)
(35)

leading with Equation (27) to

p(z) = −
∫ b

z

dp

dz
dz . (36)

Finally we solve Equation (??c) with boundary conditions (18) or (25). (Only one will be
needed, as the other has already been used implicitly when we determined the axial flux). We
can rewrite Equation (??c) as

∂

∂r
(vr)+ r ∂u

∂z
= 0,

and then use (25), to obtain

v = A(z)

r
− 1

r

∫
r
∂u

∂z
dr = 1

r

(
RmR

′
mu(Rm, z)+

∫ Rm

r

r
∂u

∂z
dr
)
= 1

r

d

dz

∫ Rm

r

ru(r, z)dr.

(37)

Upon substituting (34) in (37) and subsequent differentiation, we obtain (a complicated ex-
pression for)v (see appendix). It may be verified that boundary condition (18) indeed is
satisfied.

7.2. THE FORCE ON THE PLUNGER

By substituting the above results in Equation (31), we obtain to leading order

f =
∫ b

zp

(
p

dRp
dz
+
[∂u
∂r

]
r=Rp

)
Rp dz =

∫ b

zp

(
−1

2R
2
p

dp

dz
+
[∂u
∂r

]
r=Rp

Rp

)
dz =

= up
∫ b

zp

γm − γp

(βm − βp)
2− (αm − αp)(γm − γp)

dz. (38)

Although the approximation is strictly speaking no longer valid atz = zp, the integral con-
verges, and the contribution of the plunger-tip area does seem to be asymptotically of lower
order.

An interesting conserved quantity of the process is the time integral of the plunger force.
(Dimensionally equivalent to a net change of momentum, although inertia plays no rôle in the
present model.) It only depends on the end pointsz1 andz2 and not on the way the plunger
moves in time, becausef depends linearly onup.∫ t2

t1

f (t)dt =
∫ z2

z1

∫ b

zp

γm − γp

(βm − βp)2− (αm − αp)(γm − γp)
dz dzp . (39)

This is not a unique property of the approximation, but a direct consequence of the fact that in
the Stokes equations time is only a parameter, so that velocities may be scaled onup, and the
plunger forcef onηupzp.
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7.3. A PRESCRIBED FORCE OR VELOCITY OF THE PLUNGER

In this section, we consider the relation between time and velocity of the plunger, assuming
the velocity of, or the force on the plunger to be a prescribed function oft and the total volume
of the glass is constant.

During the pressing phase, the plunger moves downwards as the glass moves upwards. So
the plunger velocityup or the total forcef , the position of the top of the plungerzp, and the
glass levelb vary with time. Therefore we have to find a system of three equations forzp, b,
andup or f .

First, we observe that for allt the (scaled) volume� of the total amount of glass is equal
to the constant

� = π

∫ b

0
R2
m dz − π

∫ b

zp

R2
p dz. (40)

So, if we could solve this equation explicitly, we would have a functional relationship between
b andzp. This, however, is only possible in the simplest cases, for example when bothRp and
Rm are parabolas. In general it has to be solved numerically for each time step. A natural
approach is therefore to rewrite this equation as a differential equation in time that can be
solved by standard numerical integration routines.

After differentiating Equation (40), using the defining relation betweenzp andup and the
relation (38) betweenf andup, we obtain the following system of equations

dzp
dt
= up. (41a)

db

dt
= −up

R2
p

R2
m − R2

p

∣∣∣∣∣
z=b

. (41b)

f = up
∫ b

zp

G(z, zp)dz, G(z, zp) = γm − γp

(βm − βp)2− (αm − αp)(γm − γp)
. (41c)

which can be integrated numerically with eitherf (t) or up(t) given. In the simpler case when
up is given, Equation (41c) only definesf and is decoupled from the others.

8. Examples

In this section we present two examples. In the first we compare the present analytic expres-
sions foru and εv with numerical results obtained from a numerical model for glass flow
as developed by the TUE Scientific Computing Group of Professor R.M.M. Mattheij. We
use here simple parabolic profiles for the plunger and mould, and the plots are in terms of
non-dimensional quantities.

In the second example we consider the velocity of the plunger as it results from a given
force. In addition, we use a practically more representative geometry of plunger and mould,
as given in Figure 7b. The plots are expressed in dimensional quantities.
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Figure 5. Axial and radial velocity. Parabolic geometry, no-slip. (Dimensionless.)

8.1. A GIVEN PLUNGER VELOCITY

Define the geometries and motion of plunger and mould by the following (dimensionless)
expressions

Rp(z) = 0·1√5
√
z, Rm(z) = 0·8√5

√
z, zp(t) = 1− t,

whereε = 1
5 andup = −1, while we will considerz = 1. Two cases are considered: (i)

with no-slip boundary conditions (sp = sm = 0) and (ii) with mixed boundary conditions
(sp = ∞ andsm = 0). The results will be presented in dimensionless form, although for a
proper comparison the velocities will be scaled both on the same (plunger) velocity. In other
words, in the figures the axial velocityu and radial velocityεv are plotted.

In Figure 5 we have case (i). Note that the order of magnitude of the axial velocityu is
indeed the same as that of the plunger (dimensionless unity), because of the no-slip condition
at both sides. It is seen that there is an exceptionally good agreement between the numerical
(∗) and the analytic solution (solid line).

Next we consider case (ii), with mixed boundary conditions. By takingsp → ∞ in
Equation (20), we obtain∂u

∂r
= 0. Next, we have of course Equation (18). On the stationary

mould there is no slip, so here we have simply the boundary conditionu = v = 0. As there
is complete slip at the plunger wall, the velocity of the plunger plays no direct role in the
problem. The axial velocity is now determined by the effect of plunger displacement. As a
result, the order of magnitude ofu is considerably lower than unity. The results of this case
are presented in Figure 6. In the axial velocity (Figure 6a) the numerical solution (∗) appears
to differ a little from the analytical solution (solid line). This is, however, exactly consistent
with the (conjectured) error of the asymptotic approximation, which isO(ε2) ∼ 4%. Since
sp = ∞, Equation (10) becomes(σ .n) .t = 0 at the plunger. For smallε this reduces to the
approximate value∂u

∂r
= 0+O(ε2). This is different from the no-slip case where the condition

u = 0 is not only satisfied approximately but exactly.
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Figure 6. Axial and radial velocity. Parabolic geometry, mixed slip. (Dimensionless.)

Figure 7. Realistic geometry of parison (units: cm)

8.2. A GIVEN PLUNGER FORCE

In this example we consider a more realistic situation. We will take a geometry of a real
parison (Figure 7b), and we will apply a given force from which the plunger velocity results,
using the results of Sections 7.2 and 7.3, all in dimensional units. As in example 1, we use
two types of boundary condition: no slip (sp = sm = 0) and mixed (sp = ∞ andsm = 0).
The force on the plunger will be assumed constant. Figure 7b shows the final position of the
plunger in the pressing phase. In order to make the calculation easier, we calculated backwards
in time, starting with this final position att = 0. Since the Stokes equations do not include
inertial effects, the sign of the time is irrelevant and the results of a forward and a backward
calculation are exactly the same. The problem parameters, related to these cases, are the same
as given in the table of section 4, namely:V = 10 cm/s,D = 1 cm,η = 104 kg/(s m),ε = 0·1
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Figure 8. Given force = 7500 N, andsp = sm = 0 (units: sec and cm/s).

Figure 9. Given force = 5000 N,sp =∞, andsm = 0 (units: sec and cm/s).

andz = 1. This suggests that the results are typically correct with an error of the order of 1%.
In the case of Figure 8 (without slip) the applied plunger force isf = 7500 N, while in the
case of Figure 9 (with slip) the force isf = 5000 N.

Evidently, when we go further back in time until the very early splash of the plunger in
the fluid, and assume that the plunger force is still the same, the absence of resistence leads
to unlimited high velocities. This, however, is impossible in practice, as the power (∼ force×
velocity) of the equipment is limited, and the inertia of the plunger is nonzero.
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8.3. NUMERICAL METHOD

A detailed description of the numerical method used in example 1 may be found in [14, p.209].
In summary, it is described as follows: the glass flow is modelled by the Stokes equations,
i.e., for vanishing Reynolds number. The (self-adaptive) discretization scheme of the domain
is based on a triangular mesh, where each triangle has twelve degrees of freedom for the
velocity components. On each triangle the pressure is constant and the velocity is piecewise
linear. The Finite-Element Method (second order with respect to the size of mesh) is used
to solve the Stokes equations, with an indicated accuracy of at least three digits. The time
evolution of the glass domain� is found by solving the ordinary differential equation

dx(t)
dt
= v(x(t)), t ∈ [tn, tn+1], (42a)

x(tn) ∈ �tn. (42b)

9. Conclusions

We have described a model for highly viscous incompressible glass flow during the pressing
phase of the production. The model includes a general slip boundary condition. By using a
perturbation method based on the slender geometry and low Reynolds number, we obtained
explicit expressions for flow velocity and pressure gradient.

Based on these results, we calculated the total force on the plunger for given plunger
velocity, and an ordinary differential equation for the resulting plunger velocity when the
force is prescribed.

Representative examples showed a very good agreement of the flow velocity between
the present solution and numerically obtained “exact” FEM solutions. We conclude that the
perturbation method based on the slender geometry is an appropriate approach to this problem.

Appendix : v(r, z)

In this appendix, we derive the expression forv(r, z). We already got (Equation 37)

v = 1

r

d

dz

∫ Rm

r

ru(r, z)dr. (A1)

Using Equations (34) and (35), we obtain∫ Rm

r

ru(r, z)dr = up

4

(
βm − βp

αm − αp

){
(R4

m − r4)(αm − αp) . . .

+2(βm−βp)r
2 log

(
r
Rp

)−2(βmR
2
m−βpr

2) log
(
Rm
Rp

)+ βmβp(R
2
m − R2

p)(R
2
m − r2)

R2
mR

2
p

}
× . . .{

(R4
m − R4

p)(αm − αp)− 2(βmR
2
m − βpR

2
p) log

(
Rm
Rp

)+ βmβp

(
Rm

Rp
− Rp

Rm

)2}−1

. . .

− up
4

[βm(1− r2

R2
m
)+ 2r2 log

(
Rm
r

)
αm − αp

]
. (A2)
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From Equation (33), we obtain for thez-derivatives ofαm,p andβm,p

α′ = R′

R

(
1− σ

)± s′
R
, β′ = 2RR′(1+ σ)± 2Rs′. (A3)

By differentiating Equation (A2) with respect toz and using Equations (A3), we obtain the
full expression ofv.
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